Publication List

2018

  1. Controlling Topological States in Topological/Normal Insulator Heterostructures,
    M. Costa, A. T. Costa, W. A. Freitas, T. M. Schmidt, M. B. Nardelli, and A. Fazzio.
    ACS Omega 3, 15900 (2018).
  2. Electronic structure and optical properties of twisted multilayer graphene,
    A. Vela, M. V. O. Moutinho, F. J. Culchac, P. Venezuela, R. B. Capaz,
    Phys. Rev. B 98, 155135 (2018).
  3. Investigating transverse Hall voltages using two-terminal setups,
    L. R. F. Lima and A. R. Hernández,
    Phys. Rev. B 98, 115404 (2018).
  4. Impact of complex adatom-induced interactions on quantum spin Hall phases,
    F. J. dos Santos, D. A. Bahamon, R. B. Muniz, K. McKenna, E. V. Castro, J. Lischner, and A. Ferreira,
    Phys. Rev. B 98, 081407(R) (2018) [Rapid Communication].
  5. Stokes and anti-Stokes Raman scattering in mono- and bilayer graphene,
    X. Cong, J.-B. Wu, M.-L. Lin, X.-L. Liu, W. Shi, P. Venezuela, and P.-H. Tan,
    Nanoscale 10, 16138-16144 (2018).
  6. Shubnikov–de Haas oscillations in the anomalous Hall conductivity of Chern insulators,
    L. M. Canonico, J. H. García, T. G. Rappoport, A. Ferreira, and R. B. Muniz,
    Phys. Rev. B 98, 085409 (2018).
  7. Tight-binding model for the band dispersion in rhombohedral topological insulators over the whole Brillouin zone,
    C. M. Acosta, M. P. Lima, A. J. R. da Silva, A. Fazzio, and C. H. Lewenkopf,
    Phys. Rev. B 98 035106 (2018).
  8. β-tungsten: a promising metal for spintronics,
    M. Costa, A. T. Costa, J. Hu, R. Q. Wu, and R. B. Muniz,
    J. Phys.: Condens. Matter 30 305802 (2018).
  9. Finite-size correction scheme for supercell calculations in Dirac-point two-dimensional materials,
    C. G. Rocha, A. R. Rocha, P. Venezuela, J. H. Garcia, and M. S. Ferreira,
    Scientific Reports 8, 9348 (2018).
  10. Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures,
    G. S. N. Eliel, M. V. O. Moutinho, A. C. Gadelha, A. Righi, L. C. Campos, H. B. Ribeiro, Po-Wen Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, and M. A. Pimenta,
    Nature Communications 9, 1221 (2018).
  11. Tuning transport properties of graphene three-terminal structures by mechanical deformation,
    V. Torres, D. Faria, and A. Latgé,
    Phys. Rev. B 97, 165429 (2018).
  12. Excitonic structure of the optical conductivity in MoS2 monolayers,
    E. Ridolfi, C. H. Lewenkopf, and V. M. Pereira,
    Phys. Rev. B 97, 205409 (2018).
  13. Efficient method for computing the electronic transport properties of a multiterminal system,
    L. R. F. Lima, A. Dusko, and C. Lewenkopf,
    Phys. Rev. B 97, 165405 (2018).
  14. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities,
    G. S. Diniz, G. I. Luiz, A. Latgé, and E. Vernek,
    Phys. Rev. B 97, 115444 (2018).
  15. Spin relaxation in disordered graphene: Interplay between puddles and defect-induced magnetism,
    V. G. Miranda, E. R. Mucciolo, and C. H. Lewenkopf,
    J. Phys. Chem. Solids (2018).
  16. Landauer-Büttiker approach to strongly coupled quantum thermodynamics: inside-outside duality of entropy evolution,
    A. Bruch, C. Lewenkopf, and F. von Oppen,
    Phys. Rev. Lett. 120, 107701 (2018).

2017

  1. Optical properties of graphene nanocones under electric and magnetic fields,
    P. Ulloa, M. Pacheco, and A. Latgé,
    J. Phys.: Cond. Matter 29, 4355304 (2017).
  2. Tunable spin-polarized edge transport in inverted quantum-well junctions,
    D. Nanclares, L. R. F. Lima, C. H. Lewenkopf, and L. G. G. V. Dias da Silva,
    Phys. Rev. B 96, 155302 (2017).
  3. Defect-enhanced Rashba spin-polarized currents in carbon nanotubes,
    H. Santos, L. Chico, J. E. Alvarellos, and A. Latgé
    Phys. Rev. B 96, 165401 (2017).
  4. Phononic heat transport in nanomechanical structures: steady-state and pumping,
    Marcone I. Sena-Junior, L. R. F. Lima, and C. H. Lewenkopf,
    J. Phys. A: Math. Theor. 50 435202 (2017).
  5. Conductance and Kondo interference beyond proportional coupling,
    L. G. G. V. Dias da Silva, C. H. Lewenkopf, E. Vernek, G. J. Ferreira, and S. E. Ulloa,
    Phys. Rev. Lett. 119, 116801 (2017).
  6. On the properties of non-Bragg gaps of one-dimensional metamaterial superlattices,
    R. Ferreira, E. Reyes, L. E. Oliveira, and A. Latgé,
    Superlattices Microstruct. 109, 772 (2017).
  7. Dynamical amplification of magnetoresistances and Hall currents up to the THz regime,
    F. S. M. Guimarães, M. S. Dias, J. Bouaziz, A. T. Costa, R. B. Muniz, and S. Lounis
    Sci. Rep. 7, 3686 (2017).
  8. Commensurability effect on the electronic structure of carbon nanostructures: Impact on supercell calculations in nanotubes,
    M. S. Ferreira, C. G. Rocha, J. A. Lawlor, P. Venezuela, R. G. Amorim, and A. R. Rocha,
    Europhys. Lett. 117, 27005 (2017).
  9. The double-resonance Raman spectra in single-chirality (n, m) carbon nanotubes,
    L. G. Moura, M. V. O. Moutinho, P. Venezuela, F. Mauri, A. Righi, M. S. Strano, C. Fantini, and M. A. Pimenta,
    Carbon 117, 41 (2017).
  10. Multi-scale approach for strain-engineering of phosphorene,
    D. Midtvedt, C. H. Lewenkopf, and A. Croy,
    J. Phys.: Condens. Matter 29 185702 (2017).
  11. Tuning the pseudospin polarization of graphene by a pseudo-magnetic field,
    A. Georgi, P. Nemes-Incze, R. Carrillo-Bastos, D. Faria, S. V. Kusminskiy, D. Zhai, M. Schneider, D. Subramaniam, T. Mashoff, N. M. Freitag, M. Liebmann, M. Pratzer, L. Wirtz, C. R. Woods, R. V. Gorbachev, Y. Cao, K. S. Novoselov, N. Sandler, and M. Morgenstern,
    Nano Lett. 17, 2240 (2017).
  12. Electronic transport in disordered MoS2 nanoribbons,
    E. Ridolfi, L. R. F. Lima, E. R. Mucciolo, and C. H. Lewenkopf,
    Phys. Rev. B 95, 035430 (2017).
  13. Gap engineering in strained fold-like armchair graphene nanoribbons,
    V. Torres, C. León, D. Faria, and A. Latgé,
    Phys. Rev. B 95, 045425 (2017).
  14. Photon-assisted transport in bilayer graphene flakes,
    D. Zambrano, L. Rosales, A. Latgé, M. Pacheco, and P. A. Orellana,
    Phys. Rev. B 95, 035412 (2017).

2016

  1. Dynamic RKKY interaction between magnetic moments in graphene nanoribbons,
    F. S. M. Guimarães, J. Duffy, A. T. Costa, R. B. Muniz, and M. S. Ferreira,
    Phys. Rev. B 94, 235439 (2016).
  2. Chemical disorder determines the deviation of the Slater–Pauling rule for Fe2MnSi-based Heusler alloys: evidences from neutron diffraction and density functional theory,
    J. C. G. Tedesco, S. S. Pedro, R. J. Caraballo Vivas, C. Cruz, V. M. Andrade, A. M. dos Santos, A. M. G. Carvalho, M. Costa, P. Venezuela, D. L. Rocco, and M. S. Reis,
    J. Phys: Condens. Matter 28, 476002 (2016).
  3. A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics,
    L. R. F. Lima, A. R. Hernández, F. A. Pinheiro, and C. Lewenkopf,
    J. Phys: Condens. Matter 28, 505303 (2016).
  4. Strained fold-assisted transport in graphene systems,
    R. Carrillo-Bastos, C. León, D. Faria, A. Latgé, E. Y. Andrei, and N. Sandler,
    Phys. Rev. B 94, 125422 (2016).
  5. Coulomb charging energy of vacancy-induced states in graphene,
    V. G. Miranda, L. G. G. V. Dias da Silva, and C. H. Lewenkopf,
    Phys. Rev. B 94, 075114 (2016) [Editor's Suggestion][Notes on CNPq, and UFF, USP ].
  6. Band structure and topological properties of graphene in a superlattice spin exchange field,
    L. Brey, A. R. Carvalho, and H. A. Fertig,
    Phys. Rev. B 94, 085407 (2016).
  7. Lifetime and mean free path of spin waves in ultrathin cobalt films,
    E. Michel, H. Ibach, C. M. Schneider, D. L. R. Santos, and A. T. Costa,
    Phys. Rev. B 94, 014420 (2016).
  8. Impurity invisibility in graphene: Symmetry guidelines for the design of efficient sensors,
    J. Duffy, J. Lawlor, C. Lewenkopf, and M. S. Ferreira,
    Phys. Rev. B 94, 045417 (2016).
  9. Microscopic origin of subthermal magnons and the spin Seebeck effect,
    I. Diniz and A. T. Costa,
    New J. Phys. 18, 052002 (2016) [Fast Track].
  10. The influence of Gaussian strain on sublattice selectivity of impurities in graphene,
    J. Lawlor, C. G. Rocha, V. Torres, A. Latgé, and M. S. Ferreira,
    J. Phys.: Condens. Matt. 28, 235001 (2016).
  11. All-electrical production of spin-polarized currents in carbon nanotubes: Rashba spin-orbit interaction,
    H. Santos, A. Latgé, J. E. Alvarellos, and L. Chico,
    Phys. Rev. B 93, 165424 (2016).
  12. Strain–displacement relations for strain engineering in single-layer 2d materials,
    D. Midtvedt, C. H. Lewenkopf, and A. Croy,
    2D Mater. 3, 011005 (2016).
  13. Scaling theory for anomalous semiclassical quantum transport,
    M. I. Sena-Junior and A. M. S. Macêdo,
    J. Phys. A: Math. Theor. 49, 045101 (2016).

2015

  1. Dynamical current-induced ferromagnetic and antiferromagnetic resonances,
    F. S. M. Guimarães, S. Lounis, A. T. Costa, and R. B. Muniz,
    Phys. Rev. B 92, 220410(R) (2015).
  2. Periodic arrays of intercalated atoms in twisted bilayer graphene: An ab initio investigation,
    R. H. Miwa, P. Venezuela, and E. Suárez Morell,
    Phys. Rev. B 92, 115419 (2015).
  3. MoS2 on an amorphous HfO2 surface: An ab initio investigation ,
    W. L. Scopel, R. H. Miwa, T. M. Schmidt, and P. Venezuela,
    J. Appl. Phys. 117, 194303 (2015).
  4. Raman spectroscopy as probe of nanometre-scale strain variations in graphene,
    C. Neumann, S. Reichardt, P. Venezuela, M Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Tanigushi, F. Mauri, B. Beschoten, S. V. Rotkin, and C. Stampfer,
    Nature Communications 6, 8429 (2015).
  5. Breakdown of the adiabatic approach for magnetization damping in metallic ferromagnets,
    A. T. Costa and R. B. Muniz,
    Phys. Rev. B 92, 014419 (2015).
  6. Gauge fields in graphene with nonuniform elastic deformations: A quantum field theory approach,
    E. Arias, A. Hernández, and C. Lewenkopf,
    Phys. Rev. B 92, 245110 (2015).
  7. A tight-binding model for MoS2 monolayers,
    E. Ridolfi, D. Le, T. S. Rahman, E. R. Mucciolo, and C. H. Lewenkopf,
    J. Phys.: Condens. Matter 27, 365511 (2015).
  8. Local sublattice symmetry breaking for graphene with a centrosymmetric deformation,
    M. Schneider, D. Faria, S. Viola Kusminskiy, and N. Sandler,
    Phys. Rev. B 91, 161407(R) (2015).
  9. Fano resonances in hexagonal zigzag graphene rings under external magnetic flux,
    D. Faria, R. Carrillo-Bastos, N. Sandler, and A. Latgé,
    J. Phys.: Condens. Matter 27, 175301 (2015).
  10. Symmetries of quantum transport with Rashba spin–orbit: graphene spintronics,
    L. Chico, A. Latgé, and L. Brey,
    Phys. Chem. Chem. Phys. 17, 16469 (2015).
  11. Effects of a random gauge field on the conductivity of graphene sheets with disordered ripples,
    R. Burgos, J. Warnes, L. R. F. Lima, and C. Lewenkopf,
    Phys. Rev. B 91, 115403 (2015).
  12. Effective g-factor tensor for carriers in IV-VI semiconductor quantum wells,
    E. Ridolfi, E. A. de Andrada e Silva, and G. C. La Rocca,
    Phys. Rev. B 91, 085313 (2015).

2014

  1. Theoretical probing of inelastic spin-excitations in adatoms on surfaces,
    S. Lounis, B. Schweflinghausa, M. S. Dias, M. Bouhassounea, R. B. Muniz, and A. T. Costa,
    Surface Science 630, 317 (2014).
  2. Raman excitation profile of the G band in single-chirality carbon nanotubes,
    L. G. Moura, M. V. O. Moutinho, P. Venezuela, C. Fantini, A. Righi, M. S. Strano, and M. A. Pimenta,
    Phys. Rev. B 89, 035402 (2014).
  3. Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire,
    E. O. Wrasse, P. Venezuela, and R. J. Baierle,
    J. Appl. Phys. 116, 183703 (2014).
  4. Disorder-mediated Kondo effect in graphene,
    V. G. Miranda, L. G. G. V. Dias da Silva, and C. H. Lewenkopf,
    Phys. Rev. B 90, 201101(R) (2014).
  5. Renormalization of electron self-energies via their interaction with spin excitations: A first-principles investigation,
    B. Schweflinghaus, M. S. Dias, A. T. Costa, and S. Lounis,
    Phys. Rev. B 89, 235439 (2014).
  6. Gaussian deformations in graphene ribbons: Flowers and confinement,
    R. Carrillo-Bastos, D. Faria, A. Latgé, F. Mirelles, and N. Sandler,
    Phys. Rev. B 90, 0414111(R) (2014).
  7. Edge magnetization and local density of states in chiral graphene nanoribbons,
    A. R. Carvalho, J. H. Warnes, and C. H. Lewenkopf,
    Phys. Rev. B 89 245444 (2014).
  8. Magnetic response of zigzag nanoribbons under electric fields,
    F. J. Culchac, Rodrigo B. Capaz, A. T. Costa, and A. Latgé,
    J. Phys.: Condens. Matter 26, 21600 (2014).
  9. Graphene nanoribbon molecular sensor based on inelastic transport,
    C. Ritter, R. B. Muniz, and A. Latgé,
    Appl. Phys. Lett. 104,143107 (2014).

2013

  1. Half-metallicity study of graphene nanoribbon bilayers under external fields,
    C. Leon and A. Latgé,
    Phys. Rev. B 88, 245446 (2013).
  2. Graphene nanoribbon thermopower as a tool for molecular spectroscopy,
    L. Rosales, C. D. Nunez, M. Pacheco, A. Latgé, and P. A. Orellana,
    J. Appl. Phys. 114, 153711 (2013).
  3. Cone-like graphene nanostructures: electronic and optical properties,
    P. Ulloa, A. Latgé, L. E. Oliveira, and M. Pacheco,
    Nanoscale Research Letters 8, 384 (2013).
  4. Spin pumping and interlayer exchange coupling through palladium,
    D. L. R. Santos, P. Venezuela, R. B. Muniz, and A. T. Costa,
    Phys. Rev. B 88, 054423 (2013).
  5. Currents and pseudomagnetic fields in strained graphene rings,
    D. Faria, A. Latgé, S. E. Ulloa, and N. Sandler,
    Phys. Rev. B 87, 241403(R) (2013).
  6. The recursive Green’s function method for graphene,
    C. H. Lewenkopf and E. R. Mucciolo,
    J. Comput. Electron. 12, 203 (2013).
  7. Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering,
    P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J. S. Reparaz, A. Hoffmann, F. Mauri, and J. Maultzsch,
    Phys. Rev. B 87, 075402 (2013).

2012

  1. Generalized correlation functions for conductance fluctuations and the mesoscopic spin Hall effect,
    J. G. G. S. Ramos, A. L. R. Barbosa, D. Bazeia, M. S. Hussein, and C. H. Lewenkopf,
    Phys. Rev. B 86, 235112 (2012).
  2. Surface spin waves of fcc cobalt films on Cu(100): High-resolution spectra and comparison to theory,
    J. Rajeswari, H. Ibach, C. M. Schneider, A. T. Costa, D. L. R. Santos and D. L. Mills,
    Phys. Rev. B 86, 165436 (2012).
  3. Effects of disorder range and electronic energy on the perfect transmission in graphene nanoribbons,
    L. R. F. Lima, F. A. Pinheiro, R. B. Capaz, C. H. Lewenkopf, E. R. Mucciolo,
    Phys. Rev. B 86, 205111 (2012).
  4. Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry,
    A. R. Hernández, C. H. Lewenkopf,
    Phys. Rev. B 86, 155439 (2012).
  5. Spin waves in graphene nanoribbon devices,
    F. J. Culchac, A. Latgé, and A. T. Costa,
    Phys. Rev. B 86, 115407 (2012).
  6. Large magnetic anisotropy of Fe2P investigated via ab initio density functional theory calculations,
    M. Costa, O. Grånäs, A. Bergman, P. Venezuela, P. Nordblad, M. Klintenberg, and O. Eriksson,
    Phys. Rev. B 86, 085125 (2012).
  7. Dynamic RKKY interaction in graphene,
    S. R. Power, F. S. M. Guimarães, A. T. Costa, R. B. Muniz, and M. S. Ferreira,
    Phys. Rev. B 85, 195411 (2012).
  8. Helicoidal fields and spin polarized currents in carbon nanotube-DNA hybrids,
    G. Diniz, A. Latgé, and S. Ulloa,
    Phys. Rev. Lett. 108, 126601 (2012).
  9. Carbon nanotube bundles under electric field perturbations,
    I. Hammes and A. Latgé,
    J. Phys.: Condens. Matter 24, 095301 (2012).[Cover page]
  10. Nonadiabatic electron pumping through interacting quantum dots,
    A. Croy, U. Saalmann, A. R. Hernández, and C. H. Lewenkopf,
    Phys. Rev. B 85, 035309 (2012).
  11. First-principles studies of complex magnetism in Mn nanostructures on the Fe(001) surface,
    R. N. Igarashi, A. B. Klautau, R. B. Muniz, B. Sanyal, and H. M. Petrilli,
    Phys. Rev. B 85, 014436 (2012).

2011

  1. Graphene Moiré patterns observed by umklapp double-resonance Raman scattering,
    A. Righi, S. D. Costa, H. Chacham, C. Fantini, P. Venezuela, C. Magnuson, L. Colombo, W. S. Bacsa, R. S. Ruoff, and M. A. Pimenta,
    Phys. Rev. B 84, 241409(R) (2011).
  2. Anomalously large g factor of single atoms adsorbed on a metal substrate,
    B. Chilian, A. A. Khajetoorians, S. Lounis, A. T. Costa, D. L. Mills, J. Wiebe, and R. Wiesendanger,
    Phys. Rev. B 84, 212401 (2011).
  3. Semiclassical magnetotransport in graphene n-p junctions,
    P. Carmier, C. Lewenkopf, and D. Ullmo,
    Phys. Rev. B 84, 195428 (2011).
  4. Conductance Peaks in Open Quantum Dots,
    J. G. G. S. Ramos, D. Bazeia, M. S. Hussein, and C. H. Lewenkopf,
    Phys. Rev. Lett. 107, 176807 (2011).
  5. Itinerant Nature of Atom-Magnetization Excitation by Tunneling Electrons,
    A. A. Khajetoorians, S. Lounis, B. Chilian, A. T. Costa, L. Zhou, D. L. Mills, J. Wiebe, and R. Wiesendanger,
    Phys. Rev. Lett. 106, 037205 (2011).
  6. Graphene as a non-magnetic spin current lens,
    F. S. M. Guimarães, A. T. Costa, R. B. Muniz, and M. S. Ferreira,
    J. Phys.: Condens. Matter 23, 175302 (2011).
  7. Probing optical spectra of carbon nanotubes with external fields,
    J. D. Correa, C. G. Rocha, A. Latgé, and M. Pacheco,
    J. Phys.: Condens. Matter 23, 065301 (2011).
  8. Transport response of carbon-based resonant cavities under time-dependent potential and magnetic fields,
    C. G. Rocha, M. Pacheco, L. E. F. Foa Torres, G. Cuniberti, and A. Latgé,
    EPL 94, 47002 (2011).
  9. Correlated random hopping disorder in graphene at high magnetic fields: Landau level broadening and localization properties,
    A. L. C. Pereira, C. H. Lewenkopf, and E. R. Mucciolo,
    Phys. Rev. B 84, 165406 (2011).
  10. Spin currents in metallic nanostructures: Explicit calculations,
    F. S. M. Guimarães, A. T. Costa, R. B. Muniz, and D. L. Mills,
    Phys. Rev. B 84, 054403 (2011).
  11. Theory of local dynamical magnetic susceptibilities from the Korringa-Kohn-Rostoker Green function method,
    S. Lounis, A. T. Costa, R. B. Muniz, and D. L. Mills,
    Phys. Rev. B 83, 035109 (2011). [Editor's Suggestion]
  12. Spin waves in zigzag graphene nanoribbons and the stability of edge ferromagnetism,
    F. Culchac, A. Latgé, and A. T. Costa,
    New J. Phys. 13, 033028 (2011).

2010

  1. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties,
    M. Dionízio Moreira, P. Venezuela, and R. H. Miwa,
    Nanotechnology 21 285204 (2010).
  2. Molecular vibration sensor via transport measurements in carbon nanotubes,
    C. Ritter, R. B. Muniz, S. S. Makler, and A. Latgé,
    Phys. Rev. B 82, 113407 (2010).
  3. Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect,
    A. T. Costa, R. B. Muniz, S. Lounis, A. B. Klautau and D. L. Mills,
    Phys. Rev. B 82, 014428 (2010).
  4. Graphene n-p junction in a strong magnetic field: A semiclassical study,
    P. Carmier, C. Lewenkopf, and D. Ullmo,
    Phys. Rev. B 81, 241406 (2010).
  5. Disorder and electronic transport in graphene,
    E. R. Mucciolo and C. H. Lewenkopf,
    J. Phys.: Condens. Matter 22, 273201 (2010).
  6. Dynamical magnetic excitations of nanostructures from first-principles,
    S. Lounis, A. T. Costa, R. B. Muniz, and D. L. Mills,
    Phys. Rev. Lett. 105, 187205 (2010).
  7. Graphene-based spin-pumping transistor,
    F. S. M. Guimarães, A. T. Costa, R. B. Muniz, and M. S. Ferreira,
    Phys. Rev. B. 81, 233402 (2010).
  8. Carbon nanotube: A low-loss spin-current waveguide,
    F. S. M. Guimarães, D. F. Kirwan, A. T. Costa, R. B. Muniz, M. S. Ferreira, and D. L. Mills,
    Phys. Rev. B 81, 153408 (2010).
  9. A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors,
    L. F. Pereira, C. G. Rocha, A. Latgé, and M. S. Ferreira,
    J. Appl. Phys. 108, 103720 (2010).
  10. Au and Cu Atoms on NaCl(001): a single-atom based memory device prototype?,
    A. S. Martins, A. T. Costa, P. Venezuela and R. B. Muniz,
    Eur. Phys. J. B 78, 543 (2010).

2009

  1. Emergence of local magnetic moments in doped graphene-related materials,
    P. Venezuela, R. B. Muniz, A. T. Costa, D. M. Edwards, S. R. Power, and M. S. Ferreira,
    Phys. Rev. B. 80, 241413(R) (2009).
  2. Enhanced spin-valve effect in magnetically doped carbon nanotubes,
    D. F. Kirwan, V. M. de Menezes, C. G. Rocha, A. T. Costa, R. B. Muniz, S. B. Fagan, and M. S. Ferreira,
    Carbon 47, 2533 (2009).
  3. Conductance gaps in graphene ribbons designed by molecular aggregations,
    L. Rosales, M. Pacheco, Z. Barticevic, A. Latgé, and P. Orellana,
    Nanotechnology 20, 095705 (2009).
  4. Hydrostatic pressure effects on electron states in GaAs (Ga,Al)As double quantum rings,
    F. J. Culchac, N. Porras-Montenegro, A. Latgé,
    J. Appl. Phys. 105, 094324 (2009).
  5. Transport properties of antidot superlattices of graphene nanoribbons,
    L. Rosales, M. Pacheco, Z. Barticevic, A. León, A. Latgé, and P. A. Orellana,
    Phys. Rev. B 80, 073402 (2009).
 
 
publist.txt · Last modified: 2018/12/21 14:04 by caio
Recent changes RSS feed Creative Commons License Valid XHTML 1.0 Valid CSS Driven by DokuWiki
Drupal Garland Theme for Dokuwiki